
1

Multi-hop LoRaWAN: including a forwarding node
Bruno Van de Velde

Abstract—In this paper a proof-of-concept implementation of
a forwarder device was developed that allows using LoRaWAN
for multi-hop communication. Experiments were performed with
Class A and Class C devices to test the impact of adding an extra
hop to the communication. It is shown that adding a forwarder
can improve the signal strength and significantly decrease the
energy consumption of the end-device, providing it with a longer
battery life.

Keywords—LoRa, LoRaWAN, forwarder, multi-hop.

I. INTRODUCTION

The LoRaWAN protocol was designed for low power Inter-
net of Things (IoT) devices. LoraWAN allows for consuming
little power and having a long range. Furthermore, security is
built into the protocol, all data is end-to-end encrypted.

Although LoRaWAN is designed for long-range commu-
nication, the range may not be sufficient in all cases. The
end-device could e.g. be a water meter that is placed (deep)
underground. Being underground can seriously impact the
maximum communication distance. The range may also be
insufficient in places with poor network coverage.

In this paper we therefore examine the feasibility of inserting
a forwarder-node in between the end-device and the gateway to
improve the range and quality of LoraWAN communications.
We also examine the effect on the energy consumption of
the end-device, as in general the energy needed to transmit
a packet decreases when the distance between the devices
becomes smaller.

A. LoRa & LoRaWAN
LoRa is a physical layer technology designed for long-range

low-power wireless communication. The modulation format
from Semtech can be described as a “frequency modulated
chirp” [1]. This chirped spread spectrum radio modulation for-
mat allows an inexpensive chip with a cheap crystal to achieve
very high sensitivity. LoRa is also capable of demodulating
multiple orthogonal signals at the same frequency when they
are using different chirp rates.

The chirp rate in LoRa is referred to as spreading factors
(SF) in the datasheets. Higher spreading factors denote lower
bitrates.

LoRaWAN specifies a MAC layer to use on top of LoRa [2].
It uses unlicensed radio spectrum in the Industrial, Scientific
and Medical (ISM) bands. In this paper we only focus at
communication that takes place in the 868 MHz band.

1) Topology: LoRaWAN specifies a topology where end-
devices communicate with gateways. No device-to-device
communication is defined. These gateway relays messages be-
tween the end-devices and the network server in the backend.
Fig. 1 shows such a topology.

Fig. 1. LoRaWAN Topology, arrows in direction of uplink communication

The network server will in turn send the application data
from the packet to the application server of the owner of the
end-devices.

2) Data rates: LoRa supports different data rates, ranging
from 0.3 kbps to 50 kbps. The higher the chosen data rate,
the shorter the communication range will be. Selecting the
data rate is thus a trade-off between the communication range
and the transmission time. This data rate does not have to
be static, LoRaWAN supports an adaptive data rate (ADR)
scheme where the network server is able to change the data
rate of each individual end-device.

The data rates for LoRa are given by the spreading factor.
The lowest data rate corresponds to SF12 while the highest
data rate corresponds to SF7. With every increased step (e.g.
from SF8 to SF9), the transmission time approximately dou-
bles.

Transmissions from devices using different data rates can
occur simultaneously on the same frequency, as LoRa is able
to demodulate simultaneous signals using different spreading
factors [3].

With ADR, the data rate is changed on two different
occasions:
• The network server can request the end-device to change

its data rate. It can do this occasionally when it notices
that the Signal to Noise Ratio (SNR) in the last several
uplink messages was good enough or was too bad.

• When no acknowledgement (ACK) arrives at the end-
device after sending a confirmed message (the type of
message that requires an ACK), the end-device will
retransmit the packet. After every 2 failed transmissions,
the data rate will be decreased.

3) Classes: The LoRaWAN specification defines 3 different
classes:
• Class A: Bi-directional end-devices. All end-devices

must support at least Class A communication. The end-



2

Fig. 2. LoRaWAN Classes

device independently decides at which moment an uplink
transmission will occur based on its own communi-
cation needs. The uplink transmission is followed by
two receive slots during which downlink traffic can be
sent. The network server can only send a downlink
transmission shortly after an end-device has sent an
uplink transmission. At any other time it will have
to wait until the end-device performs another uplink
transmission.

• Class B: Bi-directional end-devices with scheduled
receive slots. The network server has more opportunities
to send downlink transmissions to a Class B end-device.
In addition to the Class A receive windows, extra re-
ceive windows are opened at scheduled times. This is
made possible by time synchronized beacons that are
transmitted from the gateway.

• Class C: Bi-directional end-devices with maximal
receive slots. End-devices of Class C have nearly contin-
uously open receive windows. They only stop listening
on the radio when they perform an uplink transmission.
The network server can send downlink messages at any
time. Class C end-devices will obviously consume much
more power than end-devices operating under Class A
or Class B.

4) Receive slot timing: Class A communication occurs as
shown in Fig. 3. After the packet has been transmitted, the
end-device waits RECEIVE DELAY1 seconds before opening
the RX1 receive slot. The duration of RECEIVE DELAY1 is
configurable by the network server and is 1 second by default.
If the gateway replies during RX1, the data rate will be based
on the one that was used in the transmission by the end-device.
By default the data rate used here will be identical to the data
rate of the uplink transmission. The frequency used is always
identical to the frequency in the uplink transmission. If a packet
was received during RX1, no RX2 slot will be opened.

When no packet was sent during RX1, an RX2 receive
slot will be opened one second later (the duration of RE-
CEIVE DELAY2 equals RECEIVE DELAY1 plus one sec-
ond). The frequency and data rate used during RX2 is precon-
figured on both end-devices and gateways. The frequency and
data rate do not have to be static, they can be changed with
MAC commands from the network server.

Fig. 3. End-device receive slot timing

The RX1 and RX2 receive slots remains open for approxi-
mately 20 microseconds each when no packet is received.

B. Forwarder
When devices have a bad connection, they have to use a

lower data rate which increases the transmission time. Because
the radio remains on longer, this leads to a higher energy-
consumption and reduces the available airtime of other devices.
A lower data rate also affects the amount of data that can be
sent by the end-device. The maximum payload size is less for
lower data rates and the duty cycle limitation increases the
time before the end-device can send another packet on the
same sub-band.

To address these issues, a “forwarder” node is added
between the end-device and gateway. The end-device and
gateway remain compatible with the LoRaWAN specification,
but the communication between them is redirected through the
forwarder.

Adding a forwarder to the topology differs from adding
another gateway in two ways:
• A gateway typically forwards the packet to the network

server via an ethernet connection. The forwarder will
however use LoRa to communicate with the next hop in
the topology. It can thus be placed on locations where
infrastructure is missing.

• Adding a gateway is only an option if you own the
network infrastructure. When you only own the end-
devices and the gateways are a service which you use
then adding a gateway close-by may not be an option.

II. METHODOLOGY

A. Components
1) End-device: We used an EFM32GG-STK3700 Giant

Gecko [4] as end-device. To communicate using LoRa, a
HopeRF RFM95W [5] was connected to the Expansion Header
of the Gecko.

Since no LoRaWAN implementation existed yet for this
hardware, we ported the reference implementation [6] to
support the Gecko [7].

2) Gateway and network server: The gateway we used
consists of an iC880A concentrator board [8] and a Raspberry
Pi 3, connected with each other over SPI.

The concentrator board itself does not run any code. The
gateway and the network server code both ran on the Raspberry
Pi. In our setup we even ran the application server and
application on the Raspberry Pi.



3

Fig. 4. Forwarder components

3) Forwarder: Since the forwarder is only a proof-of-
concept, we build it to be as simple as possible. The hardware
of the end-device and gateway where combined to form the
forwarder.

The Gecko is connected to the Raspberry Pi by two USB
cables, one to provide power and one to communicate. The
latter USB was connected to a SparkFun FT232RL USB to
Serial Breakout [9] to which the Gecko communicates using
the UART.

The software components running on the Raspberry Pi
are shown in Fig. 4. The “gateway” component consists of
a LoRa Gateway library [10] for communicating with the
iC880A concentrator board and a Packet Forwarder [11] that
forwards the packets to the LoRa Server over UDP. Since
the LoRa Server does not accept UDP packets as input, the
LoRa Gateway Bridge [12] is placed in between to convert
the packets into the right format. The LoRa Server [13] will
process the packet and send the application data (if any) to
the LoRa App server [14]. From there, the data is delivered to
the “application”, which is a python script that communicates
with the Gecko.

B. Forwarder implementation
The forwarder runs everything that runs on the gateway and

network server. This allows it to communicate with the end-
device without needing any changes. The Gecko connected to
the Raspberry Pi runs the same LoRaWAN implementation
as the end-device to allow communication with the upstream
gateway.

The code from the end-device and network server only sup-
ports Class A and Class C devices. This is because Class B is
still experimental and will undergo changes in the LoRaWAN
1.1 specification. Our forwarder thus also does not support
Class B devices.

To redirect all transmissions through the forwarder, the
Application Key of the end-device is changed to the one
configured on the forwarder. The Gecko of the forwarder will
be using the Application Key corresponding to the upstream

network server. These Application Keys are used to derive
the network and application session keys during the join
procedure. The Application ID also has to be updated when
the forwarder does not use the same Application ID as the
network server. Finally, the network server has to be configured
to accept joins with the DevEUI of the forwarder instead of
the DevEUI of the end-device.

For simplicity, we are only looking at the case where there
is a single end-device connecting to the forwarder.

1) Naive implementation: We started with the most straight-
forward implementation. When the LoRa App Server received
a packet, the application would be notified and send the packet
to the Gecko over the serial connection. The Gecko then sends
the packet to the gateway after a small delay (to avoid a
collision with the reply that the forwarder may send to the
end-device). When downlink data is received on the Gecko,
the inverse path is followed. The Gecko send the data to the
application over the UART and the application delivers the
data to the LoRa App Server, which will make sure that the
packet is send to the end-device at the next opportunity.

This setup has the advantage of being simple, no changes
have to be made to the existing code, but it has several
downsides:
• The downlink packets arrive too late for Class A devices.

The RX receive slots on the end-device will have passed
before the forwarder receives the downlink data from the
gateway. The downlink message is only delivered to the
end-device during the next uplink transmission.

• Packets could be lost without the end-device knowing.
The forwarder will acknowledge confirmed packets be-
fore it has transmitted them to the gateway. If the packet
is lost between the forwarder and gateway then the
end-device will still believe that the transmission was
successful.

• If the forwarder is allowed to retransmit packets, then it
might exceed its allowed duty cycle faster than the end-
device. It is possible that when the end-device sends
a packet, the forwarder still has a timeout before it is
allowed to transmit it to the gateway.

• The frame pending bit (FPending) will be incorrect. The
queue in the forwarder can be empty while the gateway
still has data. The forwarder will incorrectly inform the
end-device during a downlink transmission that there are
no further downlink packets waiting in the queue.

2) Improved implementation: To work around these down-
sides, we adapted the implementation in several places.

The general idea is that the forwarder should first transmit
the packet to the gateway and wait long enough to get a reply
back, before sending its answer to the end-device. This can
only be achieved by increasing the RECEIVE DELAY1 on
the end-device which defines the amount of seconds between
the uplink transmission and the RX1 receive slot. This is done
by setting the RxDelay byte in the join-accept message. The
LoRa Server component running on the forwarder also had to
be changed to wait longer before asking the LoRa App Server
whether there was downlink data. This DownlinkDataDelay
has to be slightly smaller than the RxDelay but large enough
such that there is enough time to transmit the uplink data to



4

the gateway and receive a potential reply with downlink data.
We currently hardcoded the DownlinkDataDelay to 9 seconds
while the RxDelay is set to 10 seconds.

The next step is to not let the forwarder send anything to the
end-device when nothing was received from the gateway. To
do this, the downlink queue was removed from the Lora App
Server and the way ACKs are handled was changed. An ACK
is now only send to the end-device when one was received
from the gateway.

To support uplink ACKs we also needed to make a minor
change to the LoRaWAN implementation on the Gecko. The
ACK flag for uplink packets is internal to the LoraWAN
stack while we need to set it manually from the application
depending on how the flag was set in the uplink packet from
the end-device. The LoraWAN stack was therefore modified
to allow this.

3) Remaining challenge: While performing the final exper-
iments we realized that there was one issue that we did not
anticipate.

Imagine the end-device sending a packet of 29 bytes to the
forwarder with SF9 and the forwarder sending it to the gateway
with SF11. When the packet gets lost between the forwarder
and gateway then the end-device will attempt to retransmit.
It has to wait at least 22.7 seconds before being allowed to
transmit on that frequency band again and the end-device will
retransmit as soon as it is allowed to. The forwarder on the
other hand was not allowed to transmit yet as it had to wait
90.6 seconds before transmitting again, as a result of having
used SF11. Many retransmissions may be dropped before the
forwarder will be able to attempt delivering the packet to the
gateway again.

This issue could thus increase the amount of undelivered
packets. Due to time constraints we did not conduct further
research into this issue.

In our experiments the link between the forwarder and
gateway used a higher data rate than the link between the end-
device and forwarder which prevented the issue from showing
up in our test results. The issue only occurs in the opposite
case.

III. EXPERIMENT SETUP

We set up some tests to examine the impact of an extra hop
on the energy consumption of the end-device, the message
airtime and the throughput of the communication.

A. Payload

The payload size of each packet was chosen to be 16 bytes
(large enough to contain statistics about the communication of
the end-device). The header is usually 13 bytes but is 2 bytes
larger when an ADR answer is added. The total packet size
is thus 29 or 31 bytes, depending whether the network server
had just requested the end-device to change the data rate or
TX power. Most packets will be 29 bytes since such requests
do not occur frequently.

B. Schedule
Each test ran for 12 hours, with the end-device programmed

to send a confirmed packet every 3 minutes. The first hour of
each test is ignored. The communication is always started using
SF12 and a TX power of 14 dBm. By removing the first hour
of the test we are only looking at the communication after the
ADR has “stabilized” the data rate and TX power, which is the
more interesting part of the measurement. The data presented
later in the paper is thus only for a duration of 11 hours.

When no ACK is received, the packet will be retransmitted
up to 8 times. These retransmissions follow each other as
quickly as possible, depending on the duty cycle. When a
packet is 29 bytes, transmission with SF12 would take 1647
milliseconds and the device would not be allowed to retransmit
in the next 164.7 seconds. When transmitting with SF7, the
device can however already retry after only 6.7 seconds.

C. Adaptive Data Rate
We enabled ADR on all devices. On the network servers

(both on the upstream one and on the code running on the
forwarder), there are two settings related to this that had to be
configured. The ADR interval defines after how many frames
the ideal data rate and TX power of the end-device should
be recalculated. We set this value to 5, which means that
the network server may request the end-device to change its
data rate and TX power at most every 5 successful uplink
transmissions. The second parameter is the installation margin
which influences the relation between the SNR and changes in
data rate and TX power. A higher margin will lower the data
rate and therefore decrease packet-loss. A lower margin will
increase the data-rate and therefore increase possible packet-
loss. We set installation margin to the recommended value of
5 dB.

While the data rate was variable, the bandwidth was fixed
to 125 kHz and the code rate was always 4/5.

Even when ADR is enabled, when the gateway replies
during RX2, a fixed data rate would be used. By default
SF12 is used. We decided to use the RX1 receive slot instead,
so that the gateway uses the same data rate as used for the
uplink transmission. This makes the difference between using
different data rates even more visible.

D. Classes
We looked into two different types of devices:
• Class A device which only sends periodic uplink data

but does not receive downlink data. An example of
such a device is a simple sensor that does nothing
more than measuring something and transmitting the
measurements.

• Class C device which can also receive downlink data
next to its periodic uplink transmission. Commands can
be sent to the device to perform an action (e.g. change
the color of the LED lights). Such devices typically don’t
run on batteries because the device has to be constantly
listening. In our tests, a downlink packet is generated
every 10 minutes.



5

Fig. 5. Topology used in test setup

E. Placement
In order to simulate a bad connection, the antennas were

removed from all devices. This made it much easier to position
the devices at a place with the wanted signal quality. If the
SNR is too low then we lose too many packets, but if it is too
high then the connection is so good that placing a forwarder
in between would not improve much.

The placement of the devices with the approximate distance
between them is shown in Fig. 5. The gateway was placed in
an open cupboard and the forwarder was placed such that it
has line of sight to both the end-device and gateway.

This setup simulates the case where the devices with anten-
nas attached are placed several hundreds of meters away from
each other with a forwarder in between them.

F. Energy consumption
The Gecko contains an Advanced Energy Monitor (AEM)

which can be used to measure its energy consumption [15].
There were however several issues that we found with using
the Simplicity Studio IDE and its integrated energy tool that
reads the values from the AEM:

• The measured consumption is limited to 50 mA while
the energy consumption of the radio lies higher than this.

• Only the data of the last 45-120 minutes was available
while our tests lasted 12 hours.

• We did not implement the Gecko code to be energy
efficient as optimizing the energy consumption of the
microcontroller was not the focus of this work. The
consumption during sleep could still be 2 mA and the
average consumption would thus lie much higher than
with other hardware.

We therefore used a different method to compare the energy
consumption of the end-device. For the RX mode of the radio,
we simply kept track of the cumulated duration which we can
directly compare with other tests as all tests have the same
duration. The consumption from TX is harder to compare since
not only the duration, but also the TX power is variable. For
this we calculate the “on-air” energy consumption, which is

the minimum energy needed to physically transmit the packet.
We first converted the TX power from dBm to mW with the
following formula:

P(mW ) = 1mW ∗ 10(P(dBm)/10)

We then calculated the consumed energy E in Wh based on
the transmission time ∆t:

EWh =
P(mW )

1000
∗ ∆t

(1000 ∗ 60 ∗ 60)

We finally converted the energy to joule by multiplying with
3600.

The final formula to calculate the total energy EJ from TX
power P and transmission time ∆t for all transmissions is
thus:

EJ =
∑

i∈transmissions

10(Pi/10) ∗ ∆ti
106

This calculation does not take “real-world” factors into
account, such as the energy consumption of the microcon-
troller, the radio chip inefficiencies and heat loss. For this
reason, this metric does not provide an accurate representation
of the real energy consumption. However, the metric does
allow comparing the minimum energy required to transmit the
packets.

G. Comparison

For each type of device (Class A and Class C), we performed
3 tests:
• The end-device and gateway communicate directly but

have a relatively bad connection.
• There is a forwarder between the end-device and gate-

way. Both links have relatively good connections.
• We also tested the more ideal case as reference. The

end-device and gateway communicate directly but with
antennas attached. They thus have a very good connec-
tion with each other.

In these tests, we kept track of the following statistics to
be able to compare the tests with and without forwarder. The
same statistics were kept on the forwarder as on the end-device
and gateway.
• The TX power of each uplink packet.
• The airtime of uplink packets.
• The duration the radio spend in RX mode.
• The amount of packets received at the end-device (only

ACKs for a Class A device).
• The amount of application layer packets send by the

end-device.
• The amount of (physical layer) packets send by the end-

device (including retransmissions).
• The spreading factor used for each transmission.
• The spreading factor of each uplink packet arriving at

the gateway.
• The RSSI and SNR of packets arriving at the gateway.
• The airtime of downlink packets.



6

IV. RESULTS

A. Class A

1) Bad direct connection: The setup with a bad connection
turned out to be really stable. All 222 packets were transmitted
using SF11 at 14 dBm and only one of these packets was a
retransmission. The reason why the connection was so stable
and the ADR appeared to do nothing can be found in the SNR
values. On average the SNR (which ranges from -20 to 20) was
-12.55. At such a level and with an installation margin of 5
dB, the network server won’t even attempt to increase the data
rate beyond SF11.

The RX time was 130.265 seconds while the on-air con-
sumption equaled 5.052 J.

2) With forwarder: A few packets were lost in the test with
the forwarder in between. Out of the 208 application layer
packets that were send, only 203 were acknowledged. In total
245 packets were transmitted.

In this test, there was a good and a bad link. On the
link between the forwarder and gateway, all packets were
transmitted with SF7 at 2 dBm, while on the link between the
end-device and forwarder the packets were mostly transmitted
with SF8 or SF9 at 14 dBm. The links had an average SNR
of -2.21 and -5.83 respectively, where the first one is only
negative because of the low TX power used.

The RX time of the end-device was 39.180 seconds while
the on-air consumption equaled 1.676 J. To provide the full
airtime we also looked at the Gecko of the forwarder. Here
the RX time and on-air consumption were only 7.976 seconds
and 0.022 J.

3) Good direct connection: Because the RSSI was still
between -100 to -110 dBm (where -120 dBm is around the
minimum RSSI for which the radio can distinguish data from
noise) and the data rate varied a lot even when the devices
were placed directly next to each other, we used antennas to
show the situation with a great connection. As expected, SF7
was used almost everywhere with a TX power of 2 dBm.

With an average SNR of 9.33, the results should be much
better than in the other tests. Although the RX time of 15.274
seconds and the on-air consumption of only 0.035 J are great,
they are worse than on the link between the forwarder and
gateway in the previous test.

The reason for this lies in the fact that out of the 218
application layer packets only 216 were acknowledged. In total
232 packets were send, which means that not a single packet
was lost other than all retransmissions of those 2 packets. It
is unclear what caused this behavior.

4) Comparison: Fig. 6 and Fig. 7 show the SNR and SF
of each packet in the three tests. It is clear from Fig. 7
that in all cases where 2 packets in a row where lost, all
subsequent retransmissions were lost as well, causing the SF
to be increased by 3 each time.

Fig. 8 shows the RX time. It stands out that the RX time
has nearly doubled in the test with the good direct connection
compared to the communication between the forwarder and
gateway. The loss of these 2 packets (and their retransmissions)
thus clearly had a high impact on the energy consumption.

Fig. 6. SNR of each packet that arrived at the forwarder/gateway

Fig. 7. SF used in each packet that arrived at the forwarder/gateway

Fig. 8. Time radio spent in RX mode

In Fig. 9, the energy consumption caused by transmissions
is shown. The relation between the bad connection and bad
forwarder link is similar to the one in Fig. 8, but less prominent
due to the logarithmic scale. The fact that a logarithmic scale is
needed to visualize the difference with the good connections
clearly shows the large impact of a higher data rate on the
energy consumption.



7

Fig. 9. On-air consumption (logarithmic scale)

With these results we have shown that adding a forwarder
has a positive influence on the energy consumption of the end-
device. The lower spreading factor lead to the total airtime
being more than 3 times smaller than without a forwarder,
even with more packets being sent in the case where the
forwarder was present. Because the duration during which the
radio is active on the end-device decreases, this results in a
lower energy consumption and thus a longer battery life.

From our results it appears that having a forwarder leads
to increased packet loss. This is especially visible in Fig. 10,
which shows how many packets were lost in each test. There
are however several observations that should be taken into ac-
count. First of all, the test for a “bad connection” has very good
results. As Fig. 10 shows, less packets were lost compared to
the setup with a good connection. This “bad connection” setup
was tested multiple time before the experiment discussed in
this paper was conducted. We found that by moving the end-
device a few centimeters, the signal quality varied a lot. In one
test (which lasted longer than 11 hours) we transmitted 272
packets (21 with SF10, 114 with SF11 and 146 with SF12) of
which only 232 arrived at the gateway and for only 229 the
ACK reached the end-device. The first test thus could have
been a lot worse than the good results where all packets were
send with SF11. Secondly, most packet loss seems to occur
on the retransmissions of the same packet. This could indicate
that there is a bug somewhere in the end-device, gateway or
network server that causes the transmission to be consistently
unsuccessful even when the data rate is lowered 3 times. It
is thus not clear how much the forwarder truly impacted the
packet loss.

If we however assume that the cases where application layer
packets were lost are caused by a bug, the results look more
like we expected. The ADR algorithm chooses a data rate
where the communication is expected to be stable, so only
few packets are supposed to be lost. Fig. 11 shows the packet
loss if we exclude the packets where all retransmissions were
lost.

Fig. 10. Packets lost during tests

Fig. 11. Physical layer packets lost during tests, excluding cases where all
retransmissions were lost

B. Class C
1) Bad direct connection: The end-device did not move

compared to the Class A test and we again found that all
packets were transmitted with SF11 with a TX power of 14
dBm. Again only one packet out of the 222 was a retransmis-
sion. The average SNR was -12.62 in this test. This time the
network server generated downlink packets every 10 minutes
as well and we found that all 66 packets have successfully
been received and acknowledged by the end-device.

The on-air consumption remains unchanged at 5.052 J. The
RX time on the other hand is far greater than with the Class
A test because here the radio stayed in RX mode the whole
time as the downlink packets could arrive at any time.

2) With forwarder: Unfortunately we were not able to test
Class C devices with the forwarder. Although the code on the
forwarder is based on the network server code which supports
Class C as shown in the test with a direct connection, the
forwarder failed to deliver the packets correctly. We believe
that this is a mistake in our implementation that was made
between the start of the project and the moment we performed
these final tests. There should be no technical limitation that
prevents the forwarder from supporting Class C devices.

We however did not see much impact of having a forwarder



8

in between the end-device and gateway. When a downlink
packet was scheduled, a packet arrived at the end-device only
moments later (as the bug only affected the contents of the
packet, not the presence of them).

3) Good direct connection: Here the results were even better
than for the Class A test. All 221 application layer packets
were transmitted with SF7 with TX power 2 dBm and were
acknowledged. Only one packet had to be retransmitted.

The average SNR was 9.05 while the on-air consumption
was only 0.0236 J because there were no retransmissions that
caused a lower data rate to be used.

4) Comparison: Without a full test with the forwarder in
between, not many conclusions can be drawn. We can however
see that our results are very similar to the Class A tests. We
don’t expect much extra information to be visible in the Class
C test with forwarder, except about the latency of downlink
packets.

Since downlink traffic for Class C devices is always sent
using the settings of an RX2 receive slot, adding the forwarder
doubles the latency. The forwarder provides no improvement
on the used data rate and the downlink message has to be
transmitted twice instead of once when there is a forwarder,
the total airtime thus doubles.

V. CONCLUSION

We have shown that it is possible to add an extra hop
between the end-device and gateway without having to change
the code on these devices.

Having such a forwarder provided several advantages:
• The communication range can be increased and commu-

nication can become possible where the end-device and
gateway could not reach each other.

• The signal strength can be improved which should result
in less packet loss when a fixed data rate is used.

• The energy consumption of the end-device can go down
if ADR is used and a better data rate becomes possible.
In our experiments the time the radio was active was
reduced with more than 3 times.

There are however some potential downsides as well:
• Latency of uplink packets increases. The time between

sending a packet and receiving a response becomes
longer even when the airtime itself reduces. This is
because every hop increases the delay with at least one
second (the minimum RECEIVE DELAY1 value) and
the delay has to be taken larger than needed when ADR
is used (as the airtime can suddenly become much larger
when the data rate decreases).

• For Class C devices, the latency of downlink traffic
doubles (when assuming the same settings for RX2 are
being used on the forwarder as on the gateway).

A. Future work
1) Data rate: The issue that can cause packet loss when

the data rate between the end-device and forwarder is higher
than the data rate from forwarder to gateway should be looked
at. The same issue has to be solved when you would want to
connect multiple end-devices to the same forwarder.

2) Class C: There are issues in our forwarder implemen-
tation that caused Class C devices to be unsupported. We
however believe that there is no technical limitation here,
after the bugs are fixed, the forwarder should support Class
C devices as well without further issues.

REFERENCES

[1] B. Ray, Link Labs (2015, Feb. 14). What is LoRa? [Blog]. Available:
https://www.link-labs.com/blog/what-is-lora

[2] LoRa Alliance, LoRaWAN Specification, 2015.
[3] A. Augustin et al., “A Study of LoRa: Long Range & Low Power

Networks for the Internet of Things”, Sensors, vol. 16, no. 9, p. 1466,
2016.

[4] Silicon Labs. EFM32 Giant Gecko 32-bit Microcontroller [Online].
Available: http://www.silabs.com/products/mcu/32-bit/efm32-giant-
gecko

[5] HopeRF. RFM95W 868/915Mhz RF Transceiver Module [Online]. Avail-
able: http://www.hoperf.com/rf transceiver/lora/RFM95W.html

[6] Semtech. (2013). LoRaWAN endpoint stack implementation and example
projects [Online]. Available: https://github.com/Lora-net/LoRaMac-node

[7] Bruno Van de Velde. (2017). Fork of the LoRa-net reference
LoRaMAC-node implementation that adds support for the EFM32GG-
STK3700 / RFM95W hardware platform [Online]. Available:
https://github.com/imec-idlab/LoRaMac-node

[8] Wireless Solutions. iC880A - LoRaWAN Concen-
trator 868MHz [Online]. Available: https://wireless-
solutions.de/products/radiomodules/ic880a.html

[9] SparkFun. SparkFun USB to Serial Breakout - FT232RL [Online].
Available: https://www.sparkfun.com/products/12731

[10] Semtech and TheThingsNetwork. (2013). Driver/HAL to build a gate-
way using a concentrator board based on Semtech SX1301 multi-
channel modem and SX1257/SX1255 RF transceivers. [Online]. Avail-
able: https://github.com/TheThingsNetwork/lora gateway

[11] Semtech and TheThingsNetwork. (2013). Packet for-
warder for Linux based gateways [Online]. Available:
https://github.com/TheThingsNetwork/packet forwarder

[12] O. Brocaar. (2016). LoRa Gateway Bridge abstracts the
packet forwarder protocol into JSON over MQTT [Online]. Available:
https://github.com/brocaar/lora-gateway-bridge

[13] O. Brocaar. (2016). LoRa Server is an open-source LoRaWAN network-
server [Online]. Available: https://github.com/brocaar/loraserver

[14] O. Brocaar. (2016). LoRa App Server is an open-source
application-server for LoRa Server [Online]. Available:
https://github.com/brocaar/lora-app-server

[15] “User Manual Starter Kit EFM32GG-STK3700,” Silicon Labs, Austin,
TX, Okt. 10, 2013.


